Showing posts with label Mechanical Engineering. Show all posts
Showing posts with label Mechanical Engineering. Show all posts

Strength of Materials Questions For Competitive Exams

Strength of Materials Strength of Materials Questions For Competitive Exams

U.P.S.C., S.S.C., I.A.S., B.Sc. Engineering, Diploma and various interviews

  1. The unit of stress in S.I. units is: N/mm square, KN/mm square, N/meter square
  2. Whenever some external system of forces acts on a body, it undergoes some deformation. As the body undergoes some deformation, it sets up some resistance to the deformation. This resistance per unit area to deformation is called: Stress
  3. The unit of strain is: No unit
  4. The deformation per unit length is called: Strain
  5. When a body is subjected to two equal and opposite pushes, as a result of which the body tends to  reduce its length, the stress and strain induced is: compressive
  6. Strain is equal to Change in Length / Actual Length
  7. When a body is subjected to two equal and opposite forces, acting tangentially across the resisting section, as a result of which the body tends to shear off across the section, the stress and strain induced is: Shear Stress, Shear Strain
  8. When a body is subjected to two equal and opposite pulls, as a result of which the body tends to extend in length, the stress and strain induced is: Tensile Stress, Tensile Strain
  9. Hooks law holds good up to Elastic Limit
  10. Proportional Limit, Elastic Limit, Yielding and thereafter Failure
  11. The ratio of linear stress to linear strain: Modulus of Elasticity
  12. The ratio of shear stress to shear strain: Modulus of Rigidity
  13. The unit of modulus of elasticity is same as those of Pressure, Stress, Modulus of Rigidity
  14. Whenever a material is loaded within elastic limit, stress is: directly proportional to strain
  15. When a change in length takes place, the strain is known as Linear Strain
  16. The modulus of elasticity for Mild Steel is approximately equal to 210 KN/mm square
  17. The change in length due to a tensile or compressive force acting on a body is given by PL/AE, where, P is Tensile or compressive force acting on the body, L is original length of the body, A is Cross-Sectional Area of the body,E is Young's modulus of the material of the body
  18. The unit of Young's Modulus is same as that of Stress
  19. Young's Modulus may be defined as the ratio of Linear Stress to Linear Strain
  20. Modulus of Rigidity may be defined as the ratio of: Shear Stress to Shear Strain
  21. Two bars of different materials and same size are subjected to same tensile force. If the bars have unit elongation in the ratio of 2:5, then the ratio of modulus of elasticity of the two materials will be: 5:2
  22. The deformation of a bar under its own weight is: half the deformation if the same body is subjected to direct load equal to the weight of the body.
  23. When a bar of length l and diameter d is rigidly fixed at the upper end and hanging freely, then the total elongation produced in the bar due to its own weight is: w*l square / 2E where W is weight per unit volume of the bar
  24. The length of a conical bar is l, the diameter of the base is d and weight per unit volume is w. It is fixed at its upper end and hanging freely. The elongation of the bar under the action of its own weight will be: w*l square/ 6E
  25. The elongation of a conical bar under its own weight is: one-third that of the prismatic bar of the same length.
  26. Strain rosettes are used to: Measure linear strain
  27. The extension of a circular bar tapering uniformly from diameter d1 at one end to the diameter d2 at the other end, and subjected to an axial pull of P is given by: 4*P*l / pie*E* d1*d2 
  28. The extension of a circular bar tapering uniformly from diameter d1 at one end to the diameter d2 at the other end, and subjected to an axial pull of P is: equal to the extension of a circular bar of diameter 'root under d1*d2' subjected to the same load P.
  29. A bar of length L metres extend by l mm under a tensile force of P, the strain produced in the bar is: 0.001l / L
  30. The ultimate tensile stress of Mild Steel is:  More than the ultimate compressive stress
  31. The shear modulus of most materials with respect to the modulus of elasticity: is less than half
  32. The maximum stress produced in a bar of tapering section is at: Smaller End
  33. A bolt is made a pass through a tube and both of them are tightly fitted with the help of washers and nuts. If the nut is tightened, then: bolt is under tension and tube is under compression
  34. A rod is enclosed centrally in a tube and the assembly is tightened by rigid washers. If the assembly is subjected to a compressive load, then: both rod and tube are under compression
  35. A steel bar of 5 mm is heated from 15-degree celsius to 40-degree Celsius and it is free to expand. The bar will induce: No Stress
  36. When a bar is subjected to a change of temperature and its deformation is prevented, the stress induces in the bar is: Thermal Stress

Engineering Mechanics Free PDF Class Notes

Download Engineering Mechanics Free PDF Class Notes

engineering mechanics books, engineering mechanics book pdf, engineering mechanics books list, engineering mechanics book for gate, engineering mechanics book by timoshenko, engineering mechanics book for polytechnic, engineering mechanics book for gate pdf, engineering mechanics book by beer and johnston pdf, engineering mechanics book price, engineering mechanics books 1st year, engineering mechanics book by beer and johnston, engineering mechanics book by bhavikatti, engineering mechanics book by nelson, engineering mechanics book authors

Download Engineering Mechanics Class Notes Free PDF Book


Better Field - Mechanical or Production Engineering?

Mechanical Engineering vs Production Engineering

Production Engineering is, for the most part, a study program in Mechanical Engineering, with added emphasis on Manufacturing Engineering, Statistics and Industrial Management. All of these topics are also covered in the typical Mechanical Engineering program, albeit to a lesser extent.
Image source: http://www.practicalengineers.com.au
There is no question about which is best both of them are best on it's own way.If you are interested in the field of production methods and it's technical terminologies then you should go for production engineering and if you have interest in learning the production method,thermal properties, fluid properties, mechanics, vibration properties of various engineering items or components also sometimes management of it then you will like mechanical engineering. But let me give you a free advice job market of these branches in India are not good in present scenario unless and until you are from an IIT or an good NIT.

Better Field - Mechanical or Production Engineering

Both are almost same branches except some subject. Both the branches have specialty in manufacturing engineering and machine design. But there is one subject or you can say one side known as thermal science which differentiate them. Thermal science is broad and very interesting branch which consist of several subjects like thermodynamics, heat transfer, refrigeration and air conditioning & power plant engineering.

Those subjects are heart of anything related to temperature and heat. By knowing these subjects one can understand why our skin becomes dry in winter and sweaty in summer. Why we put cotton clothes on forehead of seek person what is reason behind it.

As compared to mechanical branch production have some deep knowledge of manufacturing science but they are far away from the Thermal science which is biggest disadvantage of choosing production engineering.

Explain Safety Concepts in Industries

All about Safety Concepts in Industries

safety concepts inc, safety concepts in the surgical setting, safety concepts of kissimmee, safety concepts ltd, safety concepts (hk) limited, safety concepts delhi, safety concepts llc, safety concepts group bv, safety concepts for preschoolers, safety concepts woodstock va, safety concepts, safety concepts app, safety concepts australia, safety concepts and techniques, safety assessment concepts, exception safety concepts and techniques, safety concepts first aid, safety concepts san antonio tx, aquatic safety concepts, assured safety concepts, aviation safety concepts, radiation safety basic concepts, holiday concepts safety beach, basic safety concepts, behavioral safety concepts, safety of machinery basic concepts, basic safety concepts in engineering, basic safety concepts in aviation, idec safety concepts book, safety concepts charlotte nc, safety coach concepts, safety culture concepts, assured safety concepts colorado, complete safety concepts, nuclear safety review concepts corporation, european safety concepts (thailand) co. ltd, car safety concepts, complete safety concepts milwaukee wi, safety concepts driving school, internet safety concepts scott driscoll, drug safety concepts, safety engineering concepts, safety health and environmental concepts for the process industry, european safety concepts thailand, electrical safety concepts, european safety concepts, safety concepts in structural glass engineering, safety concepts for, integrated safety concepts farmington nm, laboratory safety fundamental concepts, fire safety concepts tree, food safety concepts, functional safety concepts, fundamental safety concepts, safety concepts gmbh, public safety concepts group, urban concepts safety harbor, safety and health concepts, safety concepts novo hamburgo, safety concepts in nursing, safety concepts international, ultimate safety concepts inc, skyline safety concepts inc, advanced safety concepts inc, aquatic safety concepts iswimband, jan safety concepts, safety concepts jobs, workplace safety key concepts, patient safety key concepts, aquatic safety concepts llc, yorba safety concepts llc, concepts safety services pvt. ltd, life safety concepts, safety lab concepts srl, safety management concepts, modern safety concepts, four key safety management concepts, medication safety concepts, ultimate safety concepts rochester mn, health and safety management concepts, safety concepts nl, new safety concepts, nuclear safety concepts, safety of concepts, concepts of safety management, concepts of safety and health, concepts of safety and security, concepts of safety education, office safety concepts, safety concepts pdf, safety concepts ppt, basic safety concepts ppt, patient safety concepts, public safety concepts, posix safety concepts, personal safety concepts, leisure concepts safety rail, safety and reliability concepts in civil aircraft design, safety and reliability concepts, road safety concepts, concepts safety systems, safety skit concepts, safety and security concepts, unique concepts safety systems, safety management system concepts, safety instrumented systems concepts, fire safety training concepts, total safety concepts, universal safety concepts, ultimate safety concepts, lab safety fundamental concepts ucla, safety video concepts, safety concepts group b.v, safety concepts wien, yorba safety concepts, 720 safety concepts

In all kinds of industries, each shop supervisor is generally assigned the responsibility of safety in his shop regarding the men, machines and materials. Every supervisor in each shop ensures to the top executives in respect of all kinds of the safety matters. He is supposed to incorporate all new safety measures needed in the shop from time to time. 

With the growth in the size of the industry and depending upon the hazardous of industrial processes, a full fledged safety department should be created under the intensive supervision through a safety manager. The safety manager may be given a line position or staff position depending upon the working conditions in the industry. 

Sometimes the responsibility for safety rests on a safety committee formed by the top executives of the organization. A safety committee may consist of executives, supervisors, and shop floor workers. Thus the lower level employees get a channel of communication on safety matters direct to executive level. It is a matter of fact that those organizations which made safety committees had lower record of accidents than those without safety committees. 

Safety committees always motivate all the industrial employees for developing safety consciousness. It acts also as a policy making body on safety matters. To enhance the efficiency of the safety committee, some safety problem may be assigned to safety staff for identifying and implementing safety rules and publicizing them. 

Its members should be asked to go on the shop floor and watch what is being done there till date about the safety measures. It should be asked to report periodically as what improvements have been made and what more can be done for safety aspects in near future for avoiding any mis-happening in the plant. 

Safety committee often organizes safety programs to make industrial persons sufficiently alert for overall safety within the plant. A safety program tends to discover when, where and why accidents occur. It always aims at reducing accidents and the losses associated with them. It begins with the assumption that more work-connected accidents can be prevented. It does not have an end rather it is a continuous process to achieve adequate safety.

It involves providing, safety equipments and special training to employees. It consists of support by top management, appointing a safety officer, engineering a safe plant, processes and operations, educating all industrial employees to work safely, studying and analyzing the accidents to prevent their occurrence in future, holding safety contests, safety weeks etc., and awarding incentives or special prizes to departments which enforces the safety rules and having least number of accidents.

Safety Concepts in Engineering Manner

A safety programme should always include engineering safety at the design and equipment installation stage, education of employees in safe practices, concerns the attitude of employees and management. 

It should motivate all the industrial employees in accident prevention and safety consciousness. It must provide all safety instructions and training essential for the employees to think, act and work safely so that the number of accidents can be minimized. Safety education must give knowledge about safe and unsafe mechanical conditions and personal practices. 

Safety training must involve induction and orientation of new recruits to safety rules and practices, explaining safety function, during their initial job training through efforts made by the first level supervisors. Formulating employee’s safety committees, holding of employee’s safety meeting, display of charts, posters, film etc. are very much essential in each industry for stressing the need to act safely. 

It educates employees to develop their safety consciousness. An industrial worker will usually accept the use of a safety measure if he is convinced of its necessity. Therefore, suitable measures must be adopted to increase the awareness of a need for safety in the environment of work. Such measures are required in an industrial organization to develop safety consciousness among workers or other employees. 

There should be sufficient display of safety posters and films from time to time to remind industrial workers to particular hazards/accidents, providing simple and convenient safety devices, providing time to the worker for setting, removing and replacing any necessary safety devices. All industrial personnel should be asked from the first day to start working to adopt safety measures because an unskilled worker should be familiar fully to work safely. 

A safety committee should manage regular safety programmes that may hold safety competitions. Award and prizes are also to be given to the winners for imparting due respect and recognition to safe workers and create in employees a feeling of pride in safe work. It should elaborate on the safety theme until all the employees are safety conscious. 

It must hold regular safety meetings and stimulates the safety ideas in industrial workers for being more safety conscious. It must ask the shop supervisor to display all the safety aspects near the work centre. It should also mail safety information and sufficient literature pertaining to safety for reading at homes of all the industrial employees. 

It must welcome all safety suggestions. It must mark categorically all accident areas. It must conduct safety training lectures periodically for providing wide publicity to safety aspects for everything including men, machines and materials